Perceptrons
NaRCan: Natural Refined Canonical Image with Integration of Diffusion Prior for Video Editing
We propose a video editing framework, NaRCan, which integrates a hybrid deformation field and diffusion prior to generate high-quality natural canonical images to represent the input video. Our approach utilizes homography to model global motion and employs multi-layer perceptrons (MLPs) to capture local residual deformations, enhancing the model's ability to handle complex video dynamics. By introducing a diffusion prior from the early stages of training, our model ensures that the generated images retain a high-quality natural appearance, making the produced canonical images suitable for various downstream tasks in video editing, a capability not achieved by current canonical-based methods. Furthermore, we incorporate low-rank adaptation (LoRA) fine-tuning and introduce a noise and diffusion prior update scheduling technique that accelerates the training process by 14 times. Extensive experimental results show that our method outperforms existing approaches in various video editing tasks and produces coherent and high-quality edited video sequences.
Linearly Decomposing and Recomposing Vision Transformers for Diverse-Scale Models
Vision Transformers (ViTs) are widely used in a variety of applications, while they usually have a fixed architecture that may not match the varying computational resources of different deployment environments. Thus, it is necessary to adapt ViT architectures to devices with diverse computational overheads to achieve an accuracy-efficient trade-off. This concept is consistent with the motivation behind Learngene. To achieve this, inspired by polynomial decomposition in calculus, where a function can be approximated by linearly combining several basic components, we propose to linearly decompose the ViT model into a set of components called learngenes during element-wise training. These learngenes can then be recomposed into differently scaled, pre-initialized models to satisfy different computational resource constraints. Such a decomposition-recomposition strategy provides an economical and flexible approach to generating different scales of ViT models for different deployment scenarios. Compared to model compression or training from scratch, which require to repeatedly train on large datasets for diverse-scale models, such strategy reduces computational costs since it only requires to train on large datasets once. Extensive experiments are used to validate the effectiveness of our method: ViTs can be decomposed and the decomposed learngenes can be recomposed into diverse-scale ViTs, which can achieve comparable or better performance compared to traditional model compression and pre-training methods. The code for our experiments is available in the supplemental material.
Meta-learning families of plasticity rules in recurrent spiking networks using simulation-based inference
There is substantial experimental evidence that learning-and memory-related behaviours rely on local synaptic changes, but the search for distinct plasticity rules has been driven by human intuition, with limited success for multiple, co-active plasticity rules in biological networks. More recently, automated meta-learning approaches have been used in simplified settings, such as rate networks and small feed-forward spiking networks. Here, we develop a simulation-based inference (SBI) method for sequentially filtering plasticity rules through an increasingly fine mesh of constraints that can be modified on-the-fly. This method, filter SBI, allows us to infer entire families of complex and co-active plasticity rules in spiking networks. We first consider flexibly parameterized doublet (Hebbian) rules, and find that the set of inferred rules contains solutions that extend and refine--and also reject--predictions from mean-field theory. Next, we expand the search space of plasticity rules by modelling them as multi-layer perceptrons that combine several plasticity-relevant factors, such as weight, voltage, triplets and co-dependency. Out of the millions of possible rules, we identify thousands of unique rule combinations that satisfy biological constraints like plausible activity and weight dynamics. They can be used as a starting point for further investigations into specific network computations, and already suggest refinements and predictions for classical experimental approaches on plasticity. This flexible approach for principled exploration of complex plasticity rules in large recurrent spiking networks presents the most advanced search tool to date for enabling robust predictions and deep insights into the plasticity mechanisms underlying brain function.
Rethinking Model-based, Policy-based, and Value-based Reinforcement Learning via the Lens of Representation Complexity
Reinforcement Learning (RL) encompasses diverse paradigms, including modelbased RL, policy-based RL, and value-based RL, each tailored to approximate the model, optimal policy, and optimal value function, respectively. This work investigates the potential hierarchy of representation complexity among these RL paradigms. By utilizing computational complexity measures, including time complexity and circuit complexity, we theoretically unveil a potential representation complexity hierarchy within RL. We find that representing the model emerges as the easiest task, followed by the optimal policy, while representing the optimal value function presents the most intricate challenge. Additionally, we reaffirm this hierarchy from the perspective of the expressiveness of Multi-Layer Perceptrons (MLPs), which align more closely with practical deep RL and contribute to a completely new perspective in theoretical studying representation complexity in RL. Finally, we conduct deep RL experiments to validate our theoretical findings.
LLaNA: Large Language and NeRF Assistant
Multimodal Large Language Models (MLLMs) have demonstrated an excellent understanding of images and 3D data. However, both modalities have shortcomings in holistically capturing the appearance and geometry of objects. Meanwhile, Neural Radiance Fields (NeRFs), which encode information within the weights of a simple Multi-Layer Perceptron (MLP), have emerged as an increasingly widespread modality that simultaneously encodes the geometry and photorealistic appearance of objects. This paper investigates the feasibility and effectiveness of ingesting NeRF into MLLM. We create LLaNA, the first general-purpose NeRFlanguage assistant capable of performing new tasks such as NeRF captioning and Q&A. Notably, our method directly processes the weights of the NeRF's MLP to extract information about the represented objects without the need to render images or materialize 3D data structures. Moreover, we build a dataset of NeRFs with text annotations for various NeRF-language tasks with no human intervention. Based on this dataset, we develop a benchmark to evaluate the NeRF understanding capability of our method. Results show that processing NeRF weights performs favourably against extracting 2D or 3D representations from NeRFs.
Recurrent Relational Networks
Rasmus Palm, Ulrich Paquet, Ole Winther
This paper is concerned with learning to solve tasks that require a chain of interdependent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational network, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]'s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty-CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.